Shockwaves from Ukraine: Trends and Gaps in Agricultural Commodity Prices
a National Bank of Ukraine, Kyiv, Ukraine
Abstract

I propose partial-equilibrium models that describe the dynamics of global wheat and corn markets. These models extend the classic competitive storage framework by incorporating nonstationary variables. They are calibrated using data from Ukraine and key importing and exporting countries. The models enable the endogenous estimation of price trends, based on the observed movements in the underlying variables. This framework provides insights into how involuntary reductions in Ukraine’s global market presence, triggered by russia’s invasion, could have affected trend prices

Publication History
Avaliable online 18 June 2025
18
views
Full Text
Citation
Cite as: Bondarenko, O. (2025). Shockwaves from Ukraine: Trends and Gaps in Agricultural Commodity Prices. Visnyk of the National Bank of Ukraine (Working Papers, 2025/02). https://doi.org/10.26531/vnbu2025.wp02
Citation Format

Metrics
References

Alquist, R., Kilian, L., Vigfusson, R. J. (2013). Forecasting the price of oil, in G. Elliott and A. Timmermann, eds, Handbook of Economic Forecasting, Vol. 2, Part A, pp. 427–507. https://doi.org/10.1016/B978-0-444-53683-9.00008-6

Arroyo-Marioli, F., Khadan, J., Ohnsorge, F., Yamazaki, T. (2023). Forecasting industrial commodity prices: Literature review and a model suite. Working Paper, 10611. Washington: World Bank. http://hdl.handle.net/10986/40657

Baffes, J., Nagle, P. (2022). Commodity demand: Drivers, outlook, and implications, in J. Baffes and P. Nagle, eds, Commodity Markets: Evolution, Challenges and Policies, ch. 2, pp. 121–183. Washington: World Bank. https://thedocs.worldbank.org/en/doc/b4ff84b2d5dc4d0963a5074102460cc1-0350012022/related/Commodity-Markets-Chapter-2.pdf

Baumeister, C., Hamilton, J. D. (2019). Structural interpretation of vector autoregressions with incomplete identification: Revisiting the role of oil supply and demand shocks. American Economic Review, 109(5), 1873–1910. https://doi.org/10.1257/aer.20151569

Bobenrieth, E. S., Bobenrieth, J. R., Guerra, E. A., Wright, B. D., Zeng, D. (2021). Putting the empirical commodity storage model back on track: Crucial implications of a ”negligible” trend. American Journal of Agricultural Economics, 103(3), 1034–1057. https://doi.org/10.1111/ajae.12133

Bobenrieth, E. S., Wright, B., Zeng, D. (2013). Stocks-to-use ratios and prices as indicators of vulnerability to spikes in global cereal markets. Agricultural Economics, 44(s1), 43–52. https://doi.org/10.1111/agec.12049

Bondarenko, O. (2023). Agricultural commodity price dynamics: Evidence from BVAR models. Working Paper 03/2023. Kyiv: National Bank of Ukraine. https://bank.gov.ua/admin_uploads/article/WP_2023-03_Bondarenko.pdf

Cafiero, C., Bobenrieth, E. S., Bobenrieth, J. R. (2011). Storage arbitrage and commodity price volatility, in A. Prakash, ed., Safeguarding Food Security in Volatile Global Markets, ch. 15, pp. 288–313. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i2107e/i2107e15.pdf

Canova, F. (2014). Bridging DSGE models and the raw data. Journal of Monetary Economics, 67, 1–15. https://doi.org/10.1016/j.jmoneco.2014.06.003

Carroll, C. D. (2006). The method of endogenous gridpoints for solving dynamic stochastic optimization problems. Economics Letters, 91(3), 312–320. https://doi.org/10.1016/j.econlet.2005.09.013

Ceglar, A., Turco, M., Toreti, A., Doblas-Reyes, F. J. (2017). Linking crop yield anomalies to large-scale atmospheric circulation in Europe. Agricultural and Forest Meteorology, 240–241, 35–45. https://doi.org/10.1016/j.agrformet.2017.03.019

Chahad, M., Hofmann-Drahonsky, A.-C., Page, A., Tirpak, M. (2023). An updated assessment of short-term inflation projections by Eurosystem and ECB staff. https://www.ecb.europa.eu/press/economic-bulletin/focus/2023/html/ecb.ebbox202301_06~df570a38fd.en.html

Chinn, M. D., Coibion, O. (2014). The predictive content of commodity futures. Journal of Futures Markets, 34(7), 607–636. https://doi.org/10.1002/fut.21615

Deaton, A., Laroque, G. (1992). On the behaviour of commodity prices. Review of Economic Studies, 59, 1–23. https://doi.org/10.2307/2297923

Deaton, A., Laroque, G. (1995). Estimating a nonlinear rational expectations commodity price model with unobservable: State variables. Journal of Applied Econometrics, 10(S1), S9–S40. https://doi.org/10.1002/jae.3950100503

Deaton, A., Laroque, G. (1996). Competitive storage and commodity price dynamics. Journal of Political Economy, 104(5), 896–923. https://doi.org/10.1086/262046

Deuss, A., Adenauer, M. (2020). China’s grain reserves, price support and import policies: Examining the medium-term market impacts of alternative policy scenarios. OECD Food, Agriculture and Fisheries Papers, 138. https://doi.org/10.1787/f813ed01-en

Fernandez-Villaverde, J., Ramirez, J. F. R., Schorfheide, F. (2016). Solution and estimation methods for DSGE models. Working Paper, 21862. National Bureau of Economic Research. http://www.nber.org/papers/w21862

Gouel, C. (2013). Comparing numerical methods for solving the competitive storage model. Computational Economics, 41, 267–295. https://doi.org/10.1007/s10614-012-9318-y

Gouel, C., Legrand, N. (2017). Estimating the competitive storage model with trending commodity prices. Journal of Applied Econometrics, 32(4), 744–763. https://doi.org/10.1002/jae.2553

Greenspan, A. (2004). Remarks by Chairman Alan Greenspan before the Center for Strategic & International Studies, Washington, D.C., April 27, 2004). https://www.federalreserve.gov/boarddocs/speeches/2004/20040427/default.htm

Guerra, E. A., Bobenrieth, E. S., Bobenrieth, J. R., Cafiero, C. (2014). Empirical commodity storage model: the challenge of matching data and theory. European Review of Agricultural Economics, 42(4), 607–623. https://doi.org/10.1093/erae/jbu037

Gustafson, R. L. (1958). Carryover levels for grains: A method for determining amounts that are optimal under specified conditions. Technical Bulletin, 1178. United States Department of Agriculture. https://doi.org/10.22004/ag.econ.157231

Iizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., Brown, M. E., Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5, 3712. https://doi.org/10.1038/ncomms4712

Janzen, J. P., Carter, C. A., Smith, A. D., Adjemian, M. K. (2014). Deconstructing wheat price spikes: A model of supply and demand, financial speculation, and commodity price comovement. Economic Research Report, 165. United States Department of Agriculture. https://ers.usda.gov/sites/default/files/_laserfiche/publications/45199/46439_err165.pdf

Kilian, L., Murphy, D. P. (2014). The role of inventories and speculative trading in the global market for crude oil. Journal of Applied Econometrics, 29(3), 454–478. https://doi.org/10.1002/jae.2322

Lane, P. R. (2024). Monetary Policy Under Uncertainty: Keynote speech by Philip R. Lane, Member of the Executive Board of the ECB, at the Bank of England Watchers’ Conference 2024, King’s College London, London, 25 November 2024. https://www.ecb.europa.eu/press/key/date/2024/html/ecb.sp241125~df4c5a69c7.en.html

Maliar, L., Maliar, S., Taylor, J. B., Tsener, I. (2020). A tractable framework for analyzing a class of nonstationary Markov models. Quantitative Economics, 11(4), 1289–1323. https://doi.org/10.3982/QE1360

Miao, Y., Wu, W., Funke, N. (2011). Reviving the competitive storage model: A holistic approach to food commodity prices. IMF Working Paper, WP/11/64. International Monetary Fund. https://doi.org/10.5089/9781455228065.001

OECD (1993). Commodity price variability: Its nature and causes. Organisation for Economic Co-Operation And Development General Distribution, (93)71. https://one.oecd.org/document/OCDE/GD(93)71/en/pdf

OECD/FAO (2022). The Aglink Cosimo Model: a Partial Equilibrium Model of World Agricultural Markets. https://openknowledge.fao.org/server/api/core/bitstreams/568dd85a-c6dc-4a92-8728-c2b0e3233e29/content

OECD/FAO (2024). OECD-FAO Agricultural Outlook 2024-2033. https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2024-2033_4c5d2cfb-en/support-materials.html

Osmundsen, K. K., Kleppe, T. S., Liesenfeld, R., Oglend, A. (2021). Estimating the competitive storage model with stochastic trends in commodity prices. Econometrics, 9(4), 40. https://doi.org/10.3390/econometrics9040040

Roberts, M. J. and Schlenker, W. (2013). Identifying supply and demand elasticities of agricultural commodities: Implications for the US ethanol mandate. American Economic Review, 103(6), 2265–2295. https://doi.org/10.1257/aer.103.6.2265

Trostle, R. (2008). Global agricultural supply and demand: Factors contributing to the recent increase in food commodity prices. USDA Report, WRS-0801. https://ers.usda.gov/sites/default/files/_laserfiche/outlooks/40463/12274_wrs0801_1_.pdf?v=32137

Trostle, R., Marti, D., Rosen, S., Westcott, P. (2011). Why have food commodity prices risen again? USDA Report, WRS-1103. https://ers.usda.gov/sites/default/files/_laserfiche/outlooks/40481/7392_wrs1103.pdf?v=59942

Vogel, F. A., Bange, G. A. (1999). Understanding crop statistics. USDA Miscellaneous Publication, 1554. https://www.nass.usda.gov/Education_and_Outreach/Understanding_Statistics/pub1554.pdf

Zulauf, C., Schnitkey, G., Swanson, K., Paulson, N. (2021). Stock-to-use ratios of us corn, soybeans, and wheat since 1960. farmdoc daily, 11(92). https://farmdocdaily.illinois.edu/2021/06/stock-to-use-ratios-of-us-corn-soybeans-and-wheat-since-1960.html

Rights and Permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.